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This paper describes an experimental investigation of the conditions for which the 
asymptotic description of longitudinal dispersion given by Taylor ( 1954) would apply. 
At non-dimensional times following the release of a dye pulse that are significantly 
larger than those previously investigated, the integrated concentration curves were 
observed to be skewed. At relatively short times from release the concentration curves 
appear to be well described by the models presented by Sullivan (1971) and by Chat- 
win (1973). Some features of the asymptotic behaviour, namely the translation of the 
modal value of the integrated concentration curve at the discharge velocity and the 
consttint temporal growth rate of the variance, are observed at the longest times 
following release. On the basis of these observations it is estimated that a non-dimen- 
sional time interval of tu,/d = O( 105/R,), where R, = u* dlv,  u, is the friction velocity, 
v the kinematic viscosity and d the tube diameter, is required for the Taylor result to 
become applicable. Thus application of Taylor’s theory is significantly restricted in 
turbulent flows, especially those with irregular boundaries and those that are not 
stationary. There the variations in the flow must be small with respect to an equivalent 
‘development time ’ if a value of the ‘local’ longitudinal diffusion coefficient is to have 
meaning. 

1. Introduction 
The asymptotic stage of the longitudinal dispersion of a passive scalar within a 

bounded turbulent shear flow, such as that in a pipe or channel, is characterized by a 
Gaussian distribution of the cross-sectionally integrated concentration. The Gaussian 
distribution is symmetrical about an axis that is translated with the flow discharge 
velocity and the temporal growth rate of the variance of the distribution is constant. 
Chatwin (1  97 1 ) has reviewed measurements of longitudinal dispersion of Fischer (1  966) 
in an open channel and Taylor (1954) in a smooth pipe. He determined that, with the 
exception of one of Taylor’s measurements, these measurements were not character- 
istic of the asymptotic stage. One would like to find a time scale that is associated with 
asymptotic behaviour so that one could make an assessment of the conditions under 
which a ‘local’ value of longitudinal diffusivity would apply. In such naturally occur- 
ring flows as rivers or tidal estuaries one expects that the temporal changes that a 
marked fluid element would experience, owing to the unsteadiness of the flow or 
owing to the irregularities of the flow boundaries as i t  is convected downstream, should 
be slow with respect to the time interval required for the asymptotic stage to evolve if a 
‘local’ value of diffusivity is to have meaning. One notices, for example, a large 
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variation of non-dimensional longitudinal diffusivities for rivers and canals listed by 
Fischer ( 1973). 

A typical marked fluid element is transported over the flow cross-section by 
the turbulent fluctuating velocities. When the fluid element has traversed the cross- 
section a number of times, its position on the cross-section becomes independent of the 
release position. The streamwise displacement g(t)  of the fluid element relative to 
an axis moving with the flow discharge velocity 0, and the longitudinal velocity 
U ( t )  = u(t) - u, where u(t) is the instantaneous streamwise component of the velocity 
of the fluid element, are stationary random variables with zero mean for this fully 
developed flow (Batchelor, Binnie & Phillips 1955). The autocorrelation function 

where the overbar denotes an ensemble average, becomes zero for r large. Following 
Taylor (1921, 1954), the longitudinal diffusivity D is determined from 

and is constant for t large, say t > T. As a consequence of the central limit theorem, the 
distribution of marked fluid elements is expected to be Gaussian with a variance equal 
to 2Dt many time intervals T after release. 

When an initial concentration of a passive scalar, for example a uniform concentra- 
tion over the plane x = 0, is dispersed in the turbulent flow, the marked fluid can be 
considered to be comprised of marked fluid elements. The resulting concentration at a 
later time can be determined from the superposition of the probable displacements of 
these marked fluid elements (Batchelor 1949). Thus the integral C(x, t )  of the concen- 
tration over the flow cross-section will be a symmetrical Gaussian distribution centred 
about x = ut and will have a constant value of D at large downstream distances. 
Taylor (1954) has solved the diffusion equation, using the Reynolds analogy, to provide 
an estimate of D = lO-lau,, where a is the radius of a smooth-walled pipe. 

At times that are smaller than those required for the asymptotic shape, the C(x, t )  are 
observed to be skewed towards the release position (Elder 1959; Fischer 1966; Sullivan 
1971; Taylor 1954). Chatwin (1971) has demonstrated that some of these measure- 
ments are well described by the second stage of a three-stage description of the longi- 
tudinal dispersion within a bounded turbulent shear flow given by Sullivan (1971). 
(See also Chatwin 1973.) The second stage is characterized by a constant velocity 

U ( r )  rdr (3) 

of C(x, t ) ,  the maximum value of C(x ,  t ) .  Here S is the depth of the viscous layer and 
U ( r )  is the average fluid velocity in a fixed reference frame. The portion of C(x,  t )  that is 
downstream of c ( x ,  t )  is of Gaussian form with a constant diffusivity D, < D. The flow 
cross-section can be considered to be made up of core fluid, r < a - 6, and viscous fluid, 
r > a - 6. Marked fluid which is released in the core and remains in this region will 
sample this area in a time O(d/u,). Marked fluid transported from the core to the 
viscous region is advected upstream with respect to marked fluid remaining in 
the core. Thus the forward part of C(x, t )  describes marked fluid contained only in the 
core region. When a significant amount of marked fluid has passed from the core to the 
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viscous region, i.e. when the combined effect of the longitudinal dispersion of marked 
fluid in the core and the efflux of marked fluid from the core has reduced the magni- 
tude of e(z, t )  to the extent that i t  is no longer the prominent feature of C(x,t) ,  then 
a new maximum value of C(z,t)  will develop upstream and represent marked fluid 
in the core and viscous regions. 

An experiment was devised to measure a time interval that would be indicative of 
the transition from the second stage to the third or asymptotic stage of longitudinal 
turbulent dispersion. The salient feature that was selected for investigation was the 
velocity of o(z, t ) .  This is expected to be constant in both the second and the asymptotic 
stage. In  the experiment the length of pipe and discharge velocities were such that 
displacements of hundreds of metres and time intervals of minutes were involved in the 
resolution of experimental data. 

2. Experimental procedure 
A 300 m long conduit, formed from butt-jointed 6.1 m sections of 2.1 cm diameter 

iron pipe, was suspended horizontally on t-rails and aligned with a theodolite. Flow 
Reynolds numbers in the range 15000 < R = u d / v  < 37000 were obtained with a jet 
centrifugal pump. 

A neutrally buoyant solution of fluorescein was injected 26.8 m downstream of the 
flow straightener. This was comprised of a bundle of tubes 0.3 cm in diameter and 10 cm 
long which were inserted in the iron pipe. The injection device allowed a pressurized 
pulse of the dye to penetrate well into the core of the pipe flow (see figure 1, plate 1)  
through six evenly spaced ports on the pipe wall. The device was spring-loaded and 
generally gave a reproducible result. 

Downstream of the injection point a Turner open-door Fluorometer, modified such 
that the sampling tube of the instrument became a part of the pipe wall, was used to 
obtain a measure of the dye concentration within the flow. The Fluorometer was tested 
with known concentrations and produced an electrical signal that was directly propor- 
tional to the sample concentrations. When used in the experiment at the tested levels of 
concentration the Fluorometer produced an electrical signal proportional to the inte- 
gral over the flow cross-section of the concentration of dye, i.e. 

C(z, t )  = /ou/ozn C(z, r ,  8, t )  r dr d8. 

The electrical signal thus obtained was relayed to a strip-chart recorder and to a 
digital voltmeter and paper-tape punch. 

The release of a dye pulse was communicated by means of a short-range wireless to 
an operator at the sampling station, and a record of the time interval between dye 
release and the insertion of a fiducial mark on the record was measured with a stop- 
watch. 

Mean-velocity profiles were measured with an olive-oil manometer and a Pitot tube 
which was positioned on the flow cross-section with a micrometer head. For higher flow 
rates a ‘bellows ’ type manometer was used to obtain this profile. The discharge velocity 
was measured by recording the amount of time taken to fill a barrel of known volume. 
Total pressure was recorded at all of the sampling stations and the total inlet pressure 
was monitored regularly to ensure that steady flow conditions prevailed. These 
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FIGURE 2. The arrival time of the maximum value of the integrated concentration. R, = 724. ~ 

_ _ _  , second-stage velocity of 189.36 cm/s; -, discharge velocity of 183 cm/s. 

measurements were typical of a fully developed turbulent flow through a smooth- 
walled pipe. An elaboration of the experimental details is given in Dewey (1975). 

3. Experimental results 
Dyed fluid was injected into the pipe and the integrated concentration curves 

C(x,, t )  were recorded at  fixed distances xo downstream. Graphs of displacement 
against arrival times of the maximum value of C(xo,t), i.e. C(x,,t), indicated the pres- 
ence of both the second and the third stage of longitudinal dispersion (see figure 2). In 
table 1 a comparison is made between the velocities of C(x,,t) determined from the 
displacement-time records and the measured flow discharge velocity as well as the 
value of w calculated from (3) with 

S = 15v/u, and U(r) /u ,  = 241n [(a - r )  u,/v] + 5.5. 

The value of the velocity of the centre of mass of C(x,,  t )  was also measured and is 
included in table 1 for comparison with the discharge velocity. 

The experimental accuracy in measuring velocities from the concentration records 
is approximately 5 1 yo. The most significant source of error occurred when changing 
sampling stations. This procedure involved interchanging the section of pipe containing 
the sampling equipment with the pipe section at the next sampling station. The major 
error resulted from the inexact reproduction of identical flow conditions. This error is 
evidenced in the experimental scatter observed in figures 2 and 5 (c). 
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415 420 724 804(T2) 820 967 1204 (Ti) 
- 218 261 - R* 

v( ' )  103 103 189 
190 - 216 N.A. - v(a)  104 106 

u(1) 97.5 98.4 183.8 136 211.5 254.8 222 
u(2) N.A. 100 183 - 207 250 - 
U(S) - - 180 137.8 210 250 22 1 
u* 5.81 5.84 10.07 8.45 11.42 13.45 12.65 

~ ( 1 )  Value calculated using (3) and 6 = 15v/u,. 
da) Measured value. 
u(1) Measured value of discharge velocity found using barrel of known volume. 
~ ( 2 )  Value of discharge velocity estimated from the velocity of the centre of maas of the dis- 

~ ( 3 )  Value of discharge velocity estimated from the displacement-time records at  the further- 

T1 Values from Taylor (1954) as given by Chatwin (1971) in his figure 4. 
T2 Values from Taylor (1954) a given by Chatwin (1971) in his figure 3. 
N.A. Entry not available. 
Note: all velocities are given in cm/s. 

persing dye pulse. 

most downstream stations. 

TABLE 1 

A transition time t, was determined from the displacement-time records of c(x,, t ) .  
Typically these records (see figure 2) contain an initially linear segment followed by a 
transition or nonlinear segment, ending in another linear segment. For n data points 
(xo2, ti) of which the first n, are nearly linear, n, to n, are nonlinear and n2 to n are 
linear, a least-squares fit of the subset of data points at  each end of the record to a 
straight line is expected to have small residuals. A least-squares fit to the first K data 
points is given by 

t = a + bx,, 

where a and b are determined by the solution of 

K K 

i=l i = l  
c, ti = K a + b  c, ZN, 

and 

The average residual is given as 
r K  s, = .c, ( t  - t t i ) 2 .  

a=1 

(4) 

When K > n, the value of S, is expected to increase. When the same procedure is 
used to fit t = c + dx, starting with the nth data point and progressively including 
those data points with smaller index i the residuals become 
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FIGURE 3. The residuals when a leaat-squares fit is made to arrival time against displacement 
data from a forward and backward direction. R, = 820. t' = tu*/d. 

When P < n2 the value of S, is expected to increase. The value oft at  which X, = S, 
determines an elapsed time t, that is between the second and third stage. Figure 3 
shows a typical sequence of S,  and S,  values; the point of intersection determines the 
value oft,. 

The asymptotic stage of longitudinal dispersion is expected to occur after an interval 
of time sufficiently large for a typical marked fluid element to have sampled the entire 
flow cross-section including the viscous region. This time interval can be represented 
as t, = t, + t,, where t, is the time required to sample core fluid and t, the time required 
to sample the fluid contained in the viscous layer. t, is O(d/u,) and is considered neg- 
ligible with respect to t,, which is 0 ( 8 2 / ~ ) ,  where K is the coefficient of mass diffusivity. 
Thus 

and 

Assuming the Schmidt number V/K to be O( 103) for liquids gives 

t i  = 0(105/~,). (9) 

The measured values of ti plotted in figure 4 are all of order 10S/R,. The straight line 
in figure 4 has a slope of approximately 1.4 x lo6 (and so has an equation of the form 
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R - 1  x 105 

FIQURE 4. A non-dimensional time scale t i  derived from the intersection of curves of the type 
shown in figure 3. T1 and T2 refer to Taylor’s values; see table 1. 

ti = tko + 1.4 x 106/R*, which is consistent with the order-of-magnitude argument 
leading to (9), bearing in mind the limited number of measured points over a relatively 
narrow range of R,). 

The velocities of e ( x ,  t )  that were measured at R, = 415 and R, = 420 were found to 
be approximately equal to those calculated from (3) throughout the entire length of 
pipe. Figure 4 indicates that a time interval which was not experimentally attainable 
(ti N 2000) would be required for the transition at these values of R,. 

The definition and measurement of a transition time scale t ,  was based on the velo- 
city of b(x, ,  t )  because this is experimentally the most accessible feature of C(x, t ) .  
When C(z, t )  is in the final asymptotic stage it is expected to be a symmetrical Gaussian 
curve and the longitudinal diffusivity is expected to be constant. However, the experi- 
mental curves of C(xo, t )  were not found to be completely symmetrical even at  the most 
distant locations downstream, so that it takes a longer time than t ,  for complete 
symmetry to be established. The shape of C(x,t) is evolving in both space and time 
such that recording the concentration at  a fixed point as a function of time could mis- 
represent C(z,t). That is, the longitudinal dispersion that takes place during the 
recording time could give rise to a significant distortion of the recorded C(x,, t ) ,  par- 
ticularly at the sampling stations furthest downstream. 

The asymptotic form is 

C(x, t )  = At-+ exp { - (x - Ut)”laDt}, (10) 

where A is a constant determined from the total amount of passive-scalar marker. 
Considering the measurement to be made at a fixed downstream distance zo, (10) 
becomes 

C(x,, t )  = At-# exp { - (zo - gt)2/4Dt}. (11) 
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FIGURE 5. A series of station samples presented aa the variable suggested by 
Chatwin (see $3). R, = 820. 
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Following Chatwin (1971), ( 1  1 )  can be written in the form 

such that a graph of the left-hand side of (12) against t will be linear with a slope of 
- 0 / 2 D f  and will cross the time axis at t = x, /O.  This procedure, as given by Chatwin 
(1971), eliminates the assumption usually made in taking fixed-point measurements of 
turbulent dispersion that the longitudinal dispersion that occurs during the recording 
interval is negligible. The results taken at 7 experimental stations for one flow Rey- 
nolds number are shown on figure 5 .  A plus sign on the time axis indicates the calculated 
value of x o / n ,  where 0 is the measured discharge velocity. The solid line on each 
record has a slope of - u/ZDa, where D was measured from the rate of change of the 
second moment of the downstream part of C(x,,t) about the position of e(x,,t).That is, 
D is the longitudinal diffusivity estimated from data at  t > t,. As the time following 
release is increased in figure 5 the data points appear to be more completely described 
by the solid line. The departure of the data points from the solid line, corresponding to 
an upstream skewness in C(x ,  t),  is present even at  the furthermost sampling stations. 
Thus at  no time were completely Gaussian curves for C(x, t )  observed. The growth rate 
of the variance when the forward, and thus non-skewed, part of C(xo, t )  was used does 
appear to be constant for t > t,, as the typical sample record in figure 6 shows. 

One advantage of the measuring technique that was used here is that it provides a 
direct measure of the integral of the concentration. In  the measurements of both 
Fisher (1966) and Taylor (1954) a fixed probe that recorded the concentration at  one 
point on the flow cross-section was used. The assumption that the marked fluid is 
uniformly mixed over the flow cross-section is required for the interpretation of single- 
point measurements. The difference in measuring technique could explain why the 
measurements made at the pipe centre-line by Taylor (1954) appear to be less skewed, 
at comparatively shorter distances downstream, than those presented herein. 
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When applied to the asymptotic stage, the expression for D given in the introduction 
becomes 

D = low U ( t )  U ( t + 7 ) d 7  = V 2  

= 82F, (13) 
where !4? is a time. 

Now when the viscous layer is neglected T must be O(d/u,). Thus 

D = 0(( Od)2/U, d ) ,  

or D' = D/u, d = 0(( O/u,)z). (14) 

Consider, on the other hand, the unrealistic case where the value of ??, defined in 
(13), is essentially dominated by the effects of the viscous layer. Then taking t ,  as an 
estimate for T gives 

D = O( U 2 d / u ,  R,), 
or 

D' = O(O/ui R,). (15) 

In practice calculations by Chatwin (1971) suggest that the viscous sublayer makes 
a contribution of 10-20 yo to D, so that it can be anticipated that the scaling in (14) will 
normally be the appropriate one, although the shape of the graph of D/u, d against 
( U/u,)2 can be expected to depend slightly on the values of R, and v/K because there 
will be some dependence on the viscous sublayer, and the magnitude of this dependence 
will change with R,. 

4. Discussion 
It is interesting to notice that if the dispersion takes place in a hypothetical flow with 

no molecular diffusion and with complete Reynolds number similarity (Townsend 
1956, p. 196), then the value ( O / U , ) ~  is independent of R, and the result of Taylor 
(1954) that D' is a constant, i.e. that D = O(u,d) ,  is obtained from (14). This result 
is also clear in these circumstances on dimensional grounds. In  a rough-walled tube, 
therefore, the value of D' is independent of R,, but it does depend in principle on the 
ratio h/d, where h is the roughness height. (However the available experimental evi- 
dence suggests that this dependence is very weak.) 

For a flow in which complete Reynolds number similarity does not hold (but still 
with no molecular diffusion) (O/u,)2 varies with the flow conditions, so that in a 
smooth-walled tube ( g/u,)2 = f(R,), and (14) shows that D' then depends on R,. 

Equation (1 3) applies equally well to the dispersion of a passive contaminant in a 
laminar flow. There = O ( d 2 / K )  and DL = 0 ( u 2 d 2 / K ) ,  which is the result found by 
Taylor (1 953). Taylor clearly pointed out that longitudinal dispersion is governed by 
the interaction of the gradients in mean velocity with the cross-stream diffusion. In  the 
case of laminar flow one can consider DL to be given by the ratio of the square ofa term 
representing the dispersion by the mean shear ( U d )  to a term representing the lateral 
diffusion ( K ) .  By comparison the expression (14)  for D is the ratio of the square of 
u d  to a term representing the lateral diffusion due to turbulent velocities (u* d ) .  

All the experimental values of D' determined with t' > i?: in the manner described 
after (12) except that for R, = 420 are shown on figure 7 and appear to increase with 
increasing values of ( B/U,)~ (see Sullivan 1971). The value of D' for R, = 420 is clearly 
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FIGURE 7. Comparison of (14) with the authors' experimental results. , values of 2D/du,. The 

points labelled T1 and T2 are taken from experiments by Taylor (1954). 

a second-stage value. These relatively few values are not considered to be reliable 
enough to test critically the validity of (14). One can only conclude tha t  the measured 
results are not inconsistent with (14), and these are believed to be the most compre- 
hensive measurements available. 

The measured values of ti are indicative of transition to an asymptotic state of 
turbulent dispersion as measured by the velocity of d(x, t ) .  In  a review of Taylor's 
data Chatwin (1973) suggested that the transition to the asymptotic stage, as 
measured by the symmetry of C(x,t), appeared to take place at t' = 100. In  these 
experiments at approximately twice the Reynolds number available to Taylor it is 
found that a non-dimensional time that is a factor of at least three larger is required for 
symmetry to be observed. This large time is closely related to the size of the viscous 
layer. 

This work received financial support from t.he National Research Council of Canada. 
The authors are indebted to Dr P. C. Chatwin for his helpful discussion of the work. 
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FIGURE 1. A view through a t.ransparent section of the pipe showing the dye pulse at' less than 
1 m from t'he injection device. 

(Faciacing p .  304) 


